2018-2019中国开发者调查报告简报(一文了解全貌)

我们在本次调研过程中有如下主要发现(PDF版下载地址  down):

1. 30岁以下软件开发者人数占比超7成,全国近半数的开发者工作在一线城市

  • 互联网、软件、IT服务三个技术领域涵盖了国内64%以上的开发者
  • 31-40岁的开发者以工程师、高级工程师、架构师、项目经理、总监等职位居多
  • 40岁以上的开发者从事架构设计岗位的比例最高,达到23%
  • 全国有4成以上开发者月均收入过万,其中超6成来自一线城市
  • 8成架构设计师月薪过万,其中超4成的架构师平均月薪超过2万元

2. 软件开发者学习热情高涨,9成开发者通过技术媒体、技术社区、技术论坛等渠道了解行业最新 动态、获取新知识

  • 超9成开发者计划通过学习新技术来提升自己的竞争力,6成开发者每周学习6小时以上
  • 超5成人员愿意为学习购买视频课程、图文课程
  • 38%的开发者未来半年有参加培训的计划,其中超过8成的开发者参加培训的预算来自个人

3. 7成开发者在使用Java语言,近6成开发者近期最想学Python语言

  • 开发者的云/容器使用率仅15%,超6成开发者在使用Notepad++文本编辑器
  • Eclipse是最受欢迎的IDE,jQuery、Spring是较受欢迎的Framework
  • 在自动构建工具方面,Maven较受欢迎,有4成开发者在使用

4. 超7成软件开发者主要来自二本以上院校,超8成毕业于计算机与软件专业

  • 近7成开发者毕业前就找到工作,超过6成开发者未曾参加过针对大学生的就业培训
  • 学生就业情况良好,培训机构的学生就业也较乐观。
  • 78%的软件开发者所在公司招聘大学生, 44%的开发者所在公司招聘培训机构的学生

5. 大数据技术应用开始普及,但大数据应用场景相对单一

  • 77%的企业在运用大数据技术
  • 目前61%的企业对大数据的应用更多地体现在统计分析、报表及数据可视化上
  • Spark、Redis和Kafka正在成为企业大数据平台通用技术组件

6. 86%的企业正在使用云服务,近8成企业利用云平台已经开发应用或正在开发应用

  • 安全是企业选择公有云服务时最大的顾虑,也是进行云技术相关开发时的最大问题
  • 企业在虚拟机、网络存储、负载均衡方面应用云计算较为普遍,使用率分别是61%、50%、42%
  • 基于Docker或OpenStack是当前云平台部署的两种主流框架

7. 区块链技术近两年刚刚兴起,27%开发者有应用或准备应用,66%开发者尚处于初步了解阶段, 7%开发者完全不了解,但是相比于2017年,这项技术被了解和关注的程度大幅度提高

  • 比特币和以太坊是当前两种主流的区块链开发平台
  • 近五成开发者看好区块链与大数据结合,近八成考虑1年内进入区块链行业
  • 未来一年有79%的开发者会考虑进入区块链行业

8. 人工智能技术日益受到企业和市场的关注,应用前景广阔

  • 近4成开发者表示其技术领域正在尝试使用AI/机器学习/深度学习
  • 73%的开发者通过自学方式学习AI/机器学习/深度学习技术,47%开发者通过工作中实践、线上 培训课程来学习AI技术

9. 物联网产业链上企业主要集中在智能设备环节,智能家居是物联网最大的应用领域

  • 48%的开发者表示物联网正处于发展迅速阶段,39%表示刚起步
  • Wi-Fi是应用最普遍的物联网通信技术

一、培训学习

        对于大数据相关技术的学习者来讲,我们可以看到视频+图文教程,购买图书/杂志,线上视频课程, 已经基本得到了知识付费者认可,因为目前生活节奏变快,导致大家无法按照固定的学习时间进行 学习,所以通过视频等方式,具有非常好的便捷性。

        课程的价格在1000以下,时间1-2个月也是主流。 面对线上学习这种特点,其实对于课程设计人员提出了更高的要求。课程开发人员,需要将课程知识点,做的足够细,而且由于线上的特点,需要有完整的闭环反馈,视频课程+问答+知识点回顾+知识 点评估,做到更细小的闭环课程,才能提升课程体验,这就需要引入更多实战经验讲师与课程设计 师,共同完成课程的设计,需要投入更多研发精力。在服务方面,讲师,助教的服务是线上必备的服 务,从整体来看服务依然是线上课程重点。(钱兴会,楚门智能数据学院创始人)

二、编程语言及工具

        近些年,编程语言流行度的变化其实不大。多年以来,Java一直都是最常用的语言,一方面是因为 Java可以用在前后端开发,具有很好的普适性;另一方面,也是因为JVM虚拟机和Java生态的完善。 在前端开发上,Kotlin等JVM上的其他语言表现非常优异,和现有的Java类库也可以无缝兼容,会逐 步在很多场景下取代Java。

        不过,在服务端开发上,Java依然是最平衡的选择。Java的Web框架经过千锤百炼已经可以支撑足 够大的并发,JVM经过长年优化性能表现也非常出众,而Java的各种类库、统一的编程模型、丰富的 人才储备,可以满足各种场景的诉求。从未来趋势来看,Java语言持续在优化,随着Java 8的进一步 普及,Java在易用性上也变得越来越好,可以预见,其在未来也依然是最重要的后端开发语言,是开发者的必修课。

        和去年相比,最大的变化是Go。Go本身具有非常好的语言特性,可以直接被编译成机器码,具有更 好的执行性能,又比C/C++这类传统语言更天生支持并发,更容易的管理内存。随着这些年越来越多 的项目实践,Go不论是普及度还是期望度上,都有进一步的提升。在服务端开发中,总会有需要更 高处理性能的场景,此时,Go逐步取代C++,成了一个重要选型。

        此外,Python依然是最期望被学习的语言,这毫无疑问和人工智能被高度关注有密切联系。从语言层面看,Python非常适合做数据处理,也拥有很多机器学习相关的库,TensowFlow等机器学习框架 也使用Python做胶水,使得Python成为机器学习必修课。

        R被广泛应用,也和数据相关。在数据规模不大的前提下,基于R来做业务数据的分析可谓是非常的 便捷,不仅专业的开发人员可以使用,对于非开发人员而言也十分友好,因此在实践中也使用颇多。

        虽然,Windows开发的重要性持续下降,但作为操作系统,Windows依然是最流行的,也是最多开发 者在使用的。Mac虽然是良好的Android、iOS、服务端的开发机,但由于价格因素,很难成为主流。

        近些年,虽然有很多新型的数据库项目,但离普及还依然有距离,MySQL、Redis、HBase等老牌数 据库依然是最佳选择。从趋势看,越来越多的开发者不会再选择自行部署和运维数据库,直接使用 各家云服务提供的中间件会更成为主流。

        Docker等容器还是持续普及中,和去年相比,普及度进一步提升。容器在保障性能的前提下,提供了 极大的弹性,这对于很多公司的业务而言都是极其重要的事情。随着各种云服务对容器支持的进一 步增强,毫无疑问,基于容器的服务部署,还会更为流行。

        而随着编程语言的极大丰富,代码编辑器的趋势也会向着更加通用来发展。当程序员在不同编程语 言间切换的时候,如果哪家编辑器提供的体验更好,那么哪家编辑器就会更为流行。 从Framework的变化趋势来看,Vue.js进一步普及,这代表了开发模式的变更,对于Web开发而言, 整体的思路会和原生App进一步趋同,前后端分离,前端可以更为灵活地处理交互细节,提供更好的 产品体验。 而Node.js被广泛用在前后端一体的服务开发下,很多全栈工程师会选择Node.js做业务服务。从实践 来看,Node.js在更高性能的服务场景下还不够稳定,更合适的场景是用来做中间层,封装更适合前 端需求的APIs,提升开发效率。

        而在Framework的榜单中,我们看到了TensorFlow。随着算力、机器学习算法的持续改进,机器学习 相关的技术被用到了推荐、广告、视觉等越来越多的领域,变成了一个基础模块。而以TensowFlow 为代表的机器学习框架,极大地降低了学习和使用机器学习算法的成本,使得越来越多的开发者可 以参与其中。可以预期,在未来的几年,以TensorFlow为代表的机器学习框架会进一步普及,成为后 端开发者的基础课。 构建工具本质上和编程语言息息相关,Java是最流行的语言,Maven就会是最普及的构建工具。(范怀宇,轻芒联合创始人)

三、大数据应用

参与调查问卷的开发者中,进行大数据技术研发与应用的企业占比依旧近8成;大数据团队的规模依 旧有近7成不到10人(注:这个比例在16年是49%),同时80%以上的企业集群规模在100个节点以 下,近7成企业日均处理数据规模小于10TB。基于以上的"不变"来看,企业构建大数据平台的方式"基 于私有云部署的解决方案依旧占比最高,略有提升,而自主研发的占比保持不变"就比较自然了;另外也体现出了参与调查问卷的开发者画像——中小企业为主体。

        在大数据应用技术的场景方面,主流依旧是:统计分析、报表生成及可视化,个性化推荐与精准营 销,和大多数开发者认为的应用大数据带来的效果分别对应,即:实现了更智能的决策,提升了运营 效率。但是只有28%的开发者明确表示产品或运营决策依赖A/B测试,接下来看看能否从18年的"变 化"找到一些端倪。

        首先,受访开发者认为所有"大数据应用落地的障碍"中,"缺乏大数据技术人才"从17年的第一位下降 为第二,而"如何做大数据应用规划"成为第一位,也就是说关注点从大数据技术更多转移到落地数 据应用、发挥数据价值方面,因此围绕着数据价值的挖掘相关的技术和产品会有更多的提升;并且 Spark组件中PySpark超过Spark Streaming,而Python是"AI时代"的首选语言,也恰恰说明了这点。

        解读完18年问卷结果的"变与不变",发现随着企业对大数据逐步的趋于理性,对数据价值的关注度不 断提升,那些能够帮助企业加深洞察,加速迭代方面的产品和解决方案越来越受到青睐。 包括加速 Ad-hoc的引擎,更好的机器学习与深度学习生态的语言或框架,以及图计算引擎与存储;另一方面, 随着云部署的普及,Cloud-native的解决方案也可以提高关注。(毕洪宇,前饿了么大数据平台总监)

四、云服务

        调查报告中的数据显示企业使用云计算的比例在2017年有一个突升,2018年这个比例继续升高达到 了86%,毫无疑问,云计算已经普及。不过,企业用云不等于所有业务都已经上云,云计算技术的广 泛应用仍需要我们不断努力。

        在云服务应用比例方面,除了最基础的虚机和存储以外,负载均衡以42%的使用比例位居第三,和我 个人在工作中的体会也是一致的。这是值得云厂商注意的,在提供了基础的虚机、存储和网络服务 之后,首先应该发展的是什么服务?答案可能就是负载均衡。

        在技术选型方面,OpenStack和Docker成为了应用最广泛的软件工具,其中OpenStack位居第一背 后的原因应该是私有云基础设施的首选框架非OpenStack莫属。而Docker被用户青睐是因为在各种 场景下它对于应用的交付、运行和维护的支持,不论你是私有云还是公有云的用户,都能从中受益。 Docker的优势在过去的三年里逐渐被越来越多的用户所了解。我们在调查报告中看到K8S和Jenkins 也得到了较高比例用户的使用,将Docker与这些工具结合起来,能够发挥更大的用途。

        用户在业务上云和云技术开发中,最关心的问题仍然是安全性和性能问题。但事实上经过过去几年 厂商和开源社区的共同努力,这两方面问题目前都已经在很大程度上得到了解决,现在需要的可能 是更多地通过媒体、培训等技术传播手段,把这两方面的最佳实践传递给客户。 另外,我还注意到了调查报告在大数据领域的数据显示,云已经成了大数据在企业落地的首选平台。(李明宇,奥思数据创始人&CTO)

五、AI技术

        2018年是AI技术落地的元年,过去我们的关注点在算法多么先进,能够实现什么样的轰动效果,比如AlphaGo战胜围棋冠军李世石;现在我们更加关注AI技术是否能够给现实场景赋能,落地效果如何,市场空间多大,这份报告的立足点也在于此。

        根据报告显示,在企业人工智能应用现状方面,近4成开发者表示其技术领域正在尝试使用AI/机器 学习/深度学习,但13%的企业尚未实现信息化。 这是一个起点,也相当符合一个新技术全面应用于现实的规律,我开玩笑总结出来一个人工智能三 定律:第一点,AI不是Artificial Intelligence,是Artificial Idiocy(人工愚蠢);第二点,我们说Artificial Intelligence,其实大多数时候是指Artificial Artificial Intelligence(人工人工智能);第三点,有多少人 工就有多少智能。 落地实践是一个漫长的过程,针对这一未来必然改变整个社会结构的变革,我们要多一点耐心。

        在 报告中我们可以看到,AI的应用还有很大的发展空间,而如何帮助企业寻找到其业务痛点,寻找落地 场景,进而利用AI技术帮 助其进行提升和改进,甚至业务重塑,将是这场变革的关键点。最终达到提 升工作效率、流程自动化,亦或提供精准服务的目标,将人力解放出来来做更重要的事情。

        制造、金融行业是AI技术结合最多的行业,紧接着健康医疗、电商、社交媒体、教育、安防、交通物 流、零售、游戏娱乐、能源和旅游。这与每个行业的自身特性和自身发展程度都有很大的关系,而如 何让从业者有动力在其业务中结合和实施AI技术,是破局的关键。 随着数据的开放,AI技术的进步,落地的深入,未来的应用一定会更加广泛。(鲍捷,现任文因互联CEO&联合创始人)

六、区块链

        2018年加密数字货币市场大起大落,充满戏剧性。而这种戏剧性使得更多的开发者开始关注这项新 技术中所蕴含的机会。这项调查的结果可能存在小样本偏差,我认为高达 27%的开发者正在或是准 备使用区块链,这个比例太高了。但是相比于2017年,这项技术被了解和关注的程度大幅度提高,这 一点是无可质疑的。

        4成开发者拥有加密数字资产,教育/培训/学术/科研/院校行业的数字资产普及率较高。

        时至2018年末,区块链产业呈现了币圈萧条、链圈热闹的情形。这是个好现象, 区块链与实体经济的结合才是真正的起飞之道。但我仍然认为,要想把区块链的优势发挥出来,通证是大杀器。

        以太坊的优势在于文档和教学资源比较丰富,配套成熟,但是其他方面已经显示出越来越大的颓势。 希望以太坊抓住最后的优势,尽快兑现承诺,特别是将性能大幅度提升起来,否则的话,EOS超越以 太坊为期不远。我特别欣喜地看到BigchainDB榜上有名,这其实是被长期低估的一个项目,推荐各位 开发者高度关注它,以及由它衍生出来的IPDB和Ocean Protocol。

        本调查结果只是反映了Python和Java开发者数量的庞大。当前开发公链智 能合约的主流语言,在以太坊上是Solidity,在EOS上是 C++,而开发公链基础设施,不是C++就是 Go,没有Python和Java什么事。在Fabric/Sawtooth上倒是可以用多种语言开发智能合约,但是要说 因此Python和Java就能独占鳌头,我绝对不信。

        最终区块链的成功,既有赖于开发者的创新实干,也要依 靠业务和通证经济系统设计者的前瞻构思,还要依靠投资者的热情支持,所以大家都很重要。

        人人都认为区块链的突破口在金融,我对此既认同又不认同。金融作为重度监管的行业,既得利益者 实力雄厚,而且早就跟权力结为一体,撼动这个版块谈何容易。但另一方面,金融行业的既得利益者 也不是铁板一块,他们如果出来主导区块链化,那么也可能事情会有特别快的进展。这个调查中没有 将游戏放在选项中,有些遗憾,事实上游戏是区块链落地应用当中摩擦最小、效率最高的。另一个在 选项当中缺失的是共享经济。我认为共享经济也是区块链的最佳拍档之一。到底金融、游戏和共享 经济谁先落地,我们拭目以待。

        我的看法与网友不同,我认为区块链将率先与存储结合,其次是物联网和5G,然后才轮到大数据, 原因很简单,先得有大数据,然后才能分析。(孟岩,CSDN副总裁)

七、物联网

中国经济里有一个所谓的“逢8魔咒”,整个国内外经济形势的下行,也注定了2018年是一个不平凡 的一年。共享单车从某种意义上来说,其实也是非常典型的“物联网”应用,在过往4年时间中,共享单车从繁花似锦的云端直接跌落尘间,这也给物联网迅速发展的前景撒下了一些“阴影”。

不管怎样,我个人还是感觉2018年是中国物联网发展比较迅速的一年。从年初作为后起之秀的物联网平台介入者,阿里云总裁胡晓明宣布“IoT”作为阿里巴巴未来发展的第五个主赛道。这消息似一 条“鲶鱼”一下子激活了整个的物联网市场的热度。从我参与的物联网演讲中也能感受到这种氛围的 变化,以前总是最小的房间、最少的人数,现在却是在更大的会场,且还人满为患。从本报告中我们 也可以反映出这种变化,48%的开发者都认为物联网正处于发展迅速阶段。

调研中,智能家居是物联网最大的应用领域,这也比较符合我们的直观感受,如智能音箱的崛起,国 内小爱、小度、天猫精灵等智能音箱产品已迅速进入了普通用户家庭。 不过物联网真正有价值的领域还是在工业领域,及各种企业生产和应用领域。所以这也是很多观点 认为,以前火热的2C模式,开始要进入2B模式,百度开始深入钢厂、腾讯开始“种葡萄”、京东也开始智慧养猪,中国经济正式进入“下半场”。

在此,以我多年工控背景及一直从事物联网领域的工作经验,还是要给迅速发展的物联网提一个醒。 和互联网产品不同,物联网的产品边际成本远不为零,并且大量的物联网产品投放后,如果其投放成本和运维成本远超边际收益,那“共享单车”模式将是前车之鉴。还是需要物联网企业静下心,深耕技术,向行业专家学习,把产品真正做可靠、做实用,给企业带来真正的价值。

未来的发展,特别是中国物联网的发展,随着国内民族主义情绪的崛起,及安全层面天生对国外物联网平台的芥蒂和不信任,国内的物联网平台将会有长足的发展。基础物联网平台层面,会逐渐形成以偏“硬”以华为为主,偏“软”以阿里为主的双寡头格局。 每个此时此刻从事物联网领域工作的人,其实应该感到庆幸,庆幸我们赶上了这个超过互联网市值千倍的物联网时代。(刘洪峰,叶帆科技创始人兼CEO)

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页